International Journal of Network Security & Its Applications (IJNSA) - ERA, WJCI Indexed
ISSN: 0974 - 9330 (Online); 0975 - 2307 (Print)
Webpage URL: https://airccse.org/journal/ijnsa.html
Improved Steganographic Security by Applying an Irregular Image Segmentation and Hybrid Adaptive Neural Networks with Modified Ant Colony Optimization
Nameer N. El. Emam1 and Kefaya S. Qaddoum2, 1Philadelphia University, Jordan and 2Warwick University, UK
Abstract
In this paper, a new steganography algorithm has been suggested to enforce the security of data hiding and to increase the amount of payloads. This algorithm is based on four safety layers; the first safety layer has been initiated through compression and an encryption of a confidential message using a set partition in hierarchical trees (SPIHT) and advanced encryption standard (AES) mechanisms respectively. An irregular image segmentation algorithm (IIS) on a cover-image (Ic) has been constructed successfully in the second safety layer, and it is based on the adaptive reallocation segments' edges (ARSE) by applying an adaptive finite-element method (AFEM) to find the numerical solution of the proposed partial differential equation (PDE). An intelligent computing technique using a hybrid adaptive neural network with a modified ant colony optimizer (ANN_MACO) has been proposed in the third safety layer to construct a learning system. This system accepts entry using support vector machine (SVM) to generate input patterns as features of byte attributes and produces new features to modify a cover-image.
The significant innovation of the proposed novel steganography algorithm is applied efficiently on the forth safety layer which is more robust for hiding a large amount of confidential message reach to six bits per pixel (bpp) into color images. The new approach of hiding algorithm works against statistical and visual attacks with high imperceptible of hiding data into stego-images (Is). The experimental results are discussed and compared with the previous steganography algorithms; it demonstrates that the proposed algorithm has a significant improvement on the effect of the security level of steganography by making an arduous task of retrieving embedded confidential message from color images.
Keywords
Image segmentation, steganography, adaptive neural network, ACO, finite elements
Original Source URL: https://airccse.org/journal/nsa/7515nsa02.pdf
Volume URL: https://airccse.org/journal/jnsa15_current.html
No comments:
Post a Comment